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The new analysis and synthesis filters are z-1MH(z)
Abstract and zIMFk(z), which means that the frequency char-

Causal FIR matrices with anticausal FIR inverses have acteristics are unchanged. By choosing I large enough
a key role in the theory of FIR perfect reconstruction we can make E&) causal and its inverse R&) anti-
filter banks. We explore the theory of such matri- causal. So the class of all FIR PR filter banks can be
ces. Some general results on nature of inverses of first characterized by considering the cafacafi class. Unlike
order causal FIR matrices are then presented. This arbitrary FIR systems with FIR inverses, cafacafi sys-o rd e c a u al I R m t ri c s a e t h n p r s e n e d . h i s t e rm s h a v e s p e c ial s y s te m -t h e o r e t ic p r o p e rte:2 , 3 .

leads, in particular, to a complete parameterization tes1aen speal stemtoret prertest 2, [3]
of the Biorthonormai Lapped Tranisform (BOLT) re- and generally spealing, are more interesting. In [3]

earlie r B ihn Lapit is shown that the most general degree one cafacafi
ported earlier in Ill. system has the form GoVn(z) where

1. INTRODUCTION Vn(z) = I - Um 4vt + z- urv, (1.1)

It is well-known that the M-channel maximally dec- Go is nonsingular, and ut, and vn are M x I vec-
imated analysis/synthesis system of Fig. 1.1(a) can
be redrawn as in Fig. 1.1(b) where E(z) and R(z) tors with utvm = 1. (Superscript t stands for trans-
are the polyphase matrices of the analysis and synthe- pose conjugate). With urn = vm, V..(z) is the famnil-
sis bank respectively. In a recent paper [1] we argued iar degree-one paraunitary (PU) building block [4],[5].
that the set of all FIR perfect reconstruction (PR) sys- It is clear that Vm(1) = I; it can be shown that
tems can be essentially characterized by characterizing tdet Vrn(z)] = z- 1 . Inspite of the generality of this
all CAusal Fir transfer matrices with AntiCAusal Fir form, an arbitrary cafacafi system may not be fac-
Inverses, abbreviated cafacafi. In particular, this gave torizable into these building blocks! An example is
rise to the so-called BiOrthnormal Lapped 7Tansform, V(z) = uvt + Z-11 + z-2uvt, utV = 0, see [3].
abbreviated BOLT. Some theorems pertaining to the
factorization of cafacafi systems and BOLT systems,
as well as the most general degree one cafacafi build- 1.2. The BOLT
ing block were presented in [1], along with examples of A BOLT is a first order causal FIR system
unfactorizable cafacafi systems. After a brief review of
the results in [1], we present new results for first order G(z) = g(0) + z-g(1), (1.2)
polyphase matrices, and establish a complete factor-
ization of the BOLT (which was missing in [1]). with anticansal FIR inverse. In short, a BOLT is a

1.1. Importance of cafacafi systems M x M first order cafacafi system. Its degree is clearly
equal to the rank of g(1) [5].

The filter bank in Fig. 1.1 is a perfect reconstruc- Recall that the lapped orthogonal transform (LOT)
tion (PR) system [i.e., i(n) = x(n)] if and only if [6], [7], is essentially a filter bank in which the polyphase
R(z) = E-1 (z). It is an FIR filter bank if both of matrix E(z) is paraunitary with order one. This
the matrices E(z) and R(z) are FIR. So, for an FIR means that E(z) has the form (1.2), and its inverse is
PR system we should have [det E(z)] = cz-J, c:A 0. gt(0) + zgt(1) which is FIR anticausal! So the BOLT
In fact all FIR PR systems are characterized by this is a generalization of the LOT; the LOT is paraunitary,
property. Given an arbitrary FIR PR system, if we whereas the BOLT merely cafacafi.
define El(z) = z-'E(z) and Rl(z) = z'R(z) for arbi- It turns out that, while arbitrary cafacafi systems
trary I, we have constructed a new FIR PR filter bank. cannot be factorized, any BOLT can be factorized into

degree one building blocks:
iWo0 x smpporte4 is parts by the Office of Naval Research

grant N00014ý-93l-O.23, and funds from Tek -onix, Inc. G(z) = G(1)V,(z)V._&(z)... V&(z) (1.3)



where Vm(z) are as in (1.1) with uml-, 1 (Fig. 1.2). 2. FIR and anticausal (i.e., F(z) is af acafi) if and
This therefore is a generalization of the paraunitary only if UVt has p of its eigenvalues equal to unity
factorization [4] for the first order cafacafi case. The and the remaining M-p eigenvalues equal to zero.
PU factorization, however holds for any order.

Given that each building block V.(z) is cafacafi, 3. FIR and causal (i.e., F(z) is unimodular in z- 1)
it is easily verified that the product (1.3) is cafacafr.
However, the product in general is not a BOLT, that if and only if Ugt has all eigenvalues = 0. C>
is it may not be a first order system as in (1.2). This,
however, can be ensured by imposing further condi- Proof. From the unitary triangularization theo-
tions on ui and vi. This result (Sec. 3) will follow rem [8] we can write £Vt = TATt where TTt
directly from the more general results on first order 1, and A is upper triangular with the eigTvt

ssesto be developed in the next seto. IadAi pe rinua ihteegenvaules
systems e op e n secion. {A0, A1 ... Ap-, 0,... 0} on the diagonals. (Since the

rank is p there could be at most p nonzero eigenvalues).
2. INVERSES OF FIRST ORDER SYSTEMS We can then express F(z) = T(I - A + z-1&)T? so

Consider a first order M x M transfer matrix as in that [det F(z)] = p-'(i - A, + z-1Aj). This has the
(1.2). We will assume that G(1) = G(ej°) is nonsin- form CZ-K (which is necessary and sufficient for the
gular. This is the case, for example, when there exists existence of FIR inverse) if and only if A> = 0 or 1 for
an FIR inverse. We can then express G(z) = G(1)F(z) each i. Since deg F(z) = p the FIR inverse is anticausal
where F(1) = I. So we can write F(z) = I - P + z- 1 P if and only if det F(z) = cz-1 (Theorem 5.3, [2]). This
without loss of generality. Let p be the rank of P [i.e.,p=degree of F(z)] so that we can write will be the case if and only if U;t has p eigenvalues

equal to unity (and, of course, the remaining M - p
F(z) = I - + (2.1) eigenvalues = 0). Finally the FIR inverse is causal

I t +z-UV t  2 (i.e., F(z) unimodular) if and only if the determinant

whereL Uand V are Mxp. The type of inverse that F(z) is constant, i.e., A, = 0 for all i. VVV

has depends strongly on the matrix Old, in particular Note. Since UVt has rank p it can have at most p
on its eigenvalues. We now present some precise results nonzero eigenvalues. But there could be fewer, as in
on this. Throughout this section F(z) is the M x M the extreme example of a triangular matrix with all
system shown above; U and V are M x p with rank p. diagonal elements equal to zero.

Lemma 2.1. F(z) has an anticausal inverse if and Theorem 2.2. The inverse of the system F(z) de-

only if VtU is nonsingular. C pends on the properties of VtU as follows.

Proof. A minimal implementation of F(z) is shown
in Fig. 2.1. The state space description of this struc- 1. F(z) has an anticausal inverse if and only if VtU
ture (with standard notations [5]) is given by A = 0, is nonsingular.
B = Vt, c = U, and D =I -UVt. Let

2. The inverse of F(z) is FIR if and only if all eigen-
TZ [A B] = [O 1_V t ] (2.2) values of VtU are restricted to be 0's and 1's.

U IU 3. The inverse of F(z) is FIR and anticausal (i.e.,

As shown in [2], 7Z is nonsingular if and only if there F(z) is cafacafi) if and only if VtU has all eigen-
exists an anticausal inverse for F(z). We will show that values equal to unity.
7Z is nonsingular if and only if VtU is nonsingular.
Suppose 7Zx = 0 for some vector x. Then 4. The inverse of F(z) is FIR and causal (i.e., F(z) is

unimodular) if and only if VtU has all eigenvalues
V t x2 =0, and Ux++x2 =0, with x= X equaltozero.xC

Proof. Part 1 is a repetition of Lemma 2.1. Parts
Combining these we get VtUx, = 0. If VtU is nonsin- 2 and 4 follow from Theorem 2.1 by using the fact
gular then x, = 0 and so x 2 = -Ux 1 = 0 from above, that every nonzero eigenvalue of the matrix PQ is an
In short, if 7Zx = 0 then x = 0. So 7Z is nonsingu- eigenvalue of QP (for any P, Q for which PQ and
lar. On the other hand, if VtU is singular there exists QP are defined). Part 3 follows by combining parts 1

y # 0 such that VtUy = 0. If we now choose x, = -y and 2; indeed, nonsingularity of VtU and the condition
and X2 = Uy, then 7Zx =0 so 71Z singular. V v v that the eigenvalues be restricted to be ones and zeros

is equivalent to the statement that all the eigenvalues
Theorem 2.1. The inverse of F(z) is of VtU are equal to unity. V V V

1. FIR if and only if all eigenvalues of UVt are re- Example 2. 1. The cases where VtU = I. and VtU =
stricted to be O's and l's. 0 give examples of FIR systems with anticausal and

2



causal FIR inverses respectively. With F(z) = (I - Conversely, can we represent any BOLT system as
0+ z'UVt) we have in (1.3) with the restriction (3.2)? The answer is in the

affirmative: if G(z) is BOLT, this means in particular

I 't zUVt for V = I that it has an FIR inverse, and so G(1) is nonsingular.
F-'(z) = I -V +P So we can always write a degree p BOLT as in (3.1),

1 + 140 - z-iUVt for VtU = 0 where U and V are M x p matrices with rank p. Now

as one can verify by direct multiplication. Notice that Uyt = UTTtVt for any unitary T, and we can rewrite

if Vtjg ffi I, then the inverse is also of first order. So lgVt UiVt by defining Ui = UT and V• - Tt.
first order cafocafi systems with higher order inverses Note that VU14, = TtVtUT. By proper choice of T
[3) are not covered by this example. Eq. (1.1) is a t
special case of F(z) where p = 1. we can ensure that VtUl is a triangular matrix. In

Example 2.2. The following example other words, we can assume without loss of general-
ity that Vtu is triangular. Since G(z) is cfacafi the

ffi] VtU = [0 0] matrix VtU has all eigenvalues equal to unity (part 3,=1 0 0 1 0 Theorem 2.2), so

satisfies part 4 of Theorem 2.2 so that F(z) is unimod- 1 X X ... X
ular, even though 0 0 . 01 X ... X

_t 0 0 1 ... X (3.4)
Example 2.3. As a special case consider I-P+z-IP t

where p 2 = p. With p denoting the rank of P, we can

write P = UVt. Now p 2 = P implies UVtUVt = UVt. "0 "

Premultiplying by Ut and postmultiplying with V and where x stands for possibly nonzero elements. Now
1 and are nrwe denote the columns of V and U as in (3.3). Then the

using the facts that vtv enonsingular property (3.4) means that (3.2) is satisfied.
obtain VtU = I. From part 3 of Theorem 2.2 we there- Thus we have defined u,, and v,,, 1 < m < p satis-
fore conclude that there exists an anticausal FIR in- fying (3.2). We already know that if such Ur and v,
verse for I - P + z-'P, when p 2 = P. In fact the are used in (1.3), the result has the form (3.1) with U
inverse is I - P + zP, as verified by substitution. and V given by (3.3). So the given BOLT matrix (3.1)

Example 2.4. Unimodular system. By a slight can indeed be represented as in (1.3), with the vectors
modification of the above theorem we can show that satisfying (3.2). Summarizing, we have:
I + z-IUVt is unimodular if and only if VtU has all Theorem 3.1. BOLT Characterization. Consider
eigenvalues equal to zero. an M x M transfer matrix G(z). We say that this

is a BOLT if G(z) = g(0) + z-'g(1), and it has an
3. COMPLETE PARAMETERIZATION OF BOLT anticausal FIR inverse. The following statements are

equivalent:

The BOLT matrix has the form (1.2) and has anti- 1. 0(z) is a BOLT.
causal FIR inverse. Since this implies G(1) is nonsin-
gular, we can write G(z) = G(1)F(z) where F(z) is as 2. G(z) can be factorized as in (1.3) where G(1) is
in (2.1). Using Theorem 2.2 (part 3) we can say that nonsingular and Vm(z) are as in (1.1), with the
a system G(z) is BOLT if and only if it has the form vectors vA and ui satisfying (3.2).

G(z) = G(1)(IU - 1Vt + z-1UVt) (3.1) 3. G(z) can be written in the form G(z) = G(1)(I-

where VtU has all eigenvalues equal to unity. UVt + z-'UVt), where G(1) is nonsingular and
In Sec. 1.2 we saw that the BOLT can be factorized VtU has all eigenvalues equal to unity.

as in (1.3) where V,(z) is as in (1.1) with vrmu, = 1
and p is the degree of G(z). Conversely an arbitrary 4. G(z) can be written in the form G(z) = G(1)(I-
product of the form (1.3) with V,(z) as above, still U/t + z-iuvt), where G(1) is nonsingular and
represents a system with anticausal FIR inverse, but
may have order > 1 i.e., it may not be a BOLT. Sup- VtU has the triangular form (3.4).
pose we impose the further restriction that

vtui 0, 1<i <k-i (3.2) Thus if G(z) is BOLT with VtU written in the form
A; li, i=k (3.4), the columns of V and U satisfy (3.2), and can be

taken to be the vectors v, and un in the factorization
Then it can be verifed that (1.3) reduces to (3.1) with (1.3). So the factorization is determined simply by
the constant matrices V and U given by identifying the columns of V and U.

V= [vI V2  ... Vp], U = [u 1  U2  ... Up]. Degrees of freedom. The nonsingular matrix
(3.3) G(1) has M 2 elements, and the vectors uk,vk, have
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